Small Signal MOSFET

60 V, 115 mA, N-Channel SOT-23

Features

- AEC Qualified
- PPAP Capable
- Pb-Free Packages are Available

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	60	Vdc
Drain-Gate Voltage ($R_{GS} = 1.0 \text{ M}\Omega$)	V _{DGR}	60	Vdc
Drain Current - Continuous $T_C = 25^{\circ}C$ (Note 1) $T_C = 100^{\circ}C$ (Note 1) - Pulsed (Note 2)	I _D I _D I _{DM}	±115 ±75 ±800	mAdc
Gate-Source Voltage - Continuous - Non-repetitive (t _p ≤ 50 μs)	V _{GS} V _{GSM}	±20 ±40	Vdc Vpk

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board (Note 3) T _A = 25°C Derate above 25°C	P _D	225 1.8	mW mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	556	°C/W
Total Device Dissipation Alumina Substrate,(Note 4) T _A = 25°C Derate above 25°C	P _D	300 2.4	mW mW/°C
Derate above 25°C		2.7	
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	417	°C/W
Junction and Storage Temperature	T _J , T _{stg}	-55 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the

- Recommended Operating Conditions may affect device reliability.

 1. The Power Dissipation of the package may result in a lower continuous drain
- 2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.
- 3. $FR-5 = 1.0 \times 0.75 \times 0.062$ in.
- 4. Alumina = 0.4 x 0.3 x 0.025 in 99.5% alumina.

ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
60 V	7.5 Ω @ 10 V, 500 mA	115 mA

N-Channel

SOT-23 CASE 318 STYLE 21

= Device Code 702 М = Date Code* = Pb-Free Package

(Note: Microdot may be in either location) *Date Code orientation and/or position may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]		
2N7002LT1	SOT-23	3000 Tape & Reel		
2N7002LT3	001 20	10,000 Tape & Ree		
2N7002LT1G	SOT-23	3000 Tape & Reel		
2N7002LT3G	(Pb-free)	10,000 Tape & Reel		

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

1

2N7002L

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

$(V_{GS}=0, I_D=10 \ \mu Adc)$ Zero Gate Voltage Drain Current $(V_{GS}=0, V_{DS}=60 \ Vdc)$ $Gate-Body \ Leakage \ Current, \ Forward \\ (V_{GS}=20 \ Vdc)$ $Gate-Body \ Leakage \ Current, \ Reverse \\ (V_{GS}=20 \ Vdc)$ $Gate-Body \ Leakage \ Current, \ Reverse \\ (V_{GS}=-20 \ Vdc)$ $ON \ CHARACTERISTICS \ (Note 5)$ $Gate \ Threshold \ Voltage \\ (V_{DS}=V_{GS}, I_D=250 \ \mu Adc)$ $On-State \ Drain \ Current \\ (V_{DS}\geq 2.0 \ V_{DS(on)}, V_{GS}=10 \ Vdc)$ $Static \ Drain-Source \ On-State \ Voltage \\ (V_{GS}=10 \ Vdc, I_D=500 \ mAdc)$ $V_{DS}=10 \ Vdc, I_D=500 \ mAdc)$ $V_{DS}=125 \ Vdc, I_D=500 \ mAdc)$ $V_{DS}=125 \ Vdc, I_D=500 \ mAdc)$ $V_{DS}=125 \ Vdc, I_D=500 \ mAdc)$ $V_{DS}=11 \ Vdc, I_D=500 \ mAdc)$ $V_{DS}=125 \ Vdc, I_D=500 \ mAdc)$ $V_{DS}=11 \ Vdc, I_D=500 \ mAdc, I_D=500 $	mbol	Min	Тур	Max	Unit		
V _{GS} = 0, I _D = 10 μAdc Zero Gate Voltage Drain Current (V _{GS} = 0, V _{DS} = 60 Vdc) T _J = 125°C I _D (V _{GS} = 0, V _{DS} = 60 Vdc) I _G I _G (V _{GS} = 20 Vdc) I _G I _G							
$(V_{GS} = 0, V_{DS} = 60 \text{Vdc}) \qquad \qquad T_J = 125^{\circ}\text{C}$ $Gate-Body \text{Leakage Current, Forward} \\ (V_{GS} = 20 \text{Vdc}) \qquad \qquad I_{G} \\ Gate-Body \text{Leakage Current, Reverse} \\ (V_{GS} = -20 \text{Vdc}) \qquad \qquad I_{G} \\ ON \text{CHARACTERISTICS} \text{(Note 5)} \\ Gate \text{Threshold Voltage} \\ (V_{DS} = V_{GS}, I_D = 250 \mu\text{Adc}) \qquad \qquad V_{G} \\ (V_{DS} = V_{GS}, I_D = 250 \mu\text{Adc}) \qquad \qquad I_{D} \\ On-State \text{Drain Current} \\ (V_{DS} \geq 2.0 \text{V}_{DS(on)}, V_{GS} = 10 \text{Vdc}) \qquad \qquad I_{D} \\ Static \text{Drain-Source On-State Voltage} \\ (V_{GS} = 10 \text{Vdc}, I_D = 500 \text{mAdc}) \\ (V_{GS} = 5.0 \text{Vdc}, I_D = 500 \text{mAdc}) \\ (V_{GS} = 5.0 \text{Vdc}, I_D = 500 \text{mAdc}) \qquad \qquad T_{C} = 25^{\circ}\text{C} \\ T_{C} = 125^{\circ}\text{C} \\ T_{C} = 125^{\circ$	BR)DSS	60	-	-	Vdc		
	I _{DSS}	-	-	1.0 500	μAdc		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GSSF	-	-	100	nAdc		
Gate Threshold Voltage ($V_{DS} = V_{GS}$, $I_D = 250$ μAdc) On-State Drain Current ($V_{DS} \ge 2.0$ V _{DS(on)} , V _{GS} = 10 Vdc) Static Drain-Source On-State Voltage ($V_{GS} = 10$ Vdc, $I_D = 500$ mAdc) ($V_{GS} = 5.0$ Vdc, $I_D = 500$ mAdc) Static Drain-Source On-State Resistance ($V_{GS} = 10$ V, $I_D = 500$ mAdc) Static Drain-Source On-State Resistance ($V_{GS} = 10$ V, $I_D = 500$ mAdc) T _C = 25°C T _C = 125°C Forward Transconductance ($V_{DS} \ge 2.0$ V _{DS(on)} , $I_D = 200$ mAdc) DYNAMIC CHARACTERISTICS Input Capacitance ($V_{DS} = 25$ Vdc, $V_{GS} = 0$, f = 1.0 MHz) Output Capacitance ($V_{DS} = 25$ Vdc, $V_{GS} = 0$, f = 1.0 MHz) Reverse Transfer Capacitance ($V_{DS} = 25$ Vdc, $V_{GS} = 0$, f = 1.0 MHz) SWITCHING CHARACTERISTICS (Note 5) Turn-On Delay Time ($V_{DD} = 25$ Vdc, $V_{GS} = 10$ V) BODY-DRAIN DIODE RATINGS Diode Forward On-Voltage	GSSR	-	-	-100	nAdc		
$(V_{DS} = V_{GS}, I_D = 250 \ \mu Adc)$ $On-State Drain Current (V_{DS} \ge 2.0 \ V_{DS(on)}, V_{GS} = 10 \ Vdc)$ $Static Drain-Source On-State Voltage (V_{GS} = 10 \ Vdc, I_D = 500 \ mAdc) (V_{GS} = 5.0 \ Vdc, I_D = 500 \ mAdc)$ $Static Drain-Source On-State Resistance (V_{GS} = 10 \ V, I_D = 500 \ mAdc)$ $(V_{GS} = 10 \ V, I_D = 500 \ mAdc)$ $T_C = 25^{\circ}C T_C = 125^{\circ}C T_C = 1$							
$(V_{DS} \geq 2.0 \ V_{DS(on)}, V_{GS} = 10 \ Vdc)$ $Static \ Drain-Source \ On-State \ Voltage \ (V_{GS} = 10 \ Vdc, \ I_D = 500 \ mAdc) \ (V_{GS} = 5.0 \ Vdc, \ I_D = 500 \ mAdc)$ $Static \ Drain-Source \ On-State \ Resistance \ (V_{GS} = 10 \ V, \ I_D = 500 \ mAdc)$ $Static \ Drain-Source \ On-State \ Resistance \ (V_{GS} = 10 \ V, \ I_D = 500 \ mAdc)$ $T_C = 25^{\circ}C \ T_C = 125^{\circ}C \ T_C = 1$	GS(th)	1.0	-	2.5	Vdc		
$(V_{GS} = 10 \text{ Vdc, } I_D = 500 \text{ mAdc})$ $(V_{GS} = 5.0 \text{ Vdc, } I_D = 500 \text{ mAdc})$ $Static Drain-Source On-State Resistance$ $(V_{GS} = 10 \text{ V, } I_D = 500 \text{ mAdc})$ $T_C = 25^{\circ}C$ $T_C = 125^{\circ}C$ Forward Transconductance $(V_{DS} \ge 2.0 \text{ V}_{DS(on)}, I_D = 200 \text{ mAdc})$ $DYNAMIC CHARACTERISTICS$ $Input Capacitance$ $(V_{DS} = 25 \text{ Vdc, } V_{GS} = 0, f = 1.0 \text{ MHz})$ $Output Capacitance$ $(V_{DS} = 25 \text{ Vdc, } V_{GS} = 0, f = 1.0 \text{ MHz})$ $Reverse Transfer Capacitance$ $(V_{DS} = 25 \text{ Vdc, } V_{GS} = 0, f = 1.0 \text{ MHz})$ $SWITCHING CHARACTERISTICS \text{ (Note 5)}$ $Turn-On Delay Time$ $(V_{DD} = 25 \text{ Vdc, } I_D \cong 500 \text{ mAdc,}$ $R_G = 25 \Omega, R_L = 50 \Omega, V_{gen} = 10 \text{ V)}$ $EDDY-DRAIN DIODE RATINGS$ $Diode Forward On-Voltage$	D(on)	500	-	-	mA		
$(V_{GS} = 10 \text{ V, } I_D = 500 \text{ mAdc}) \qquad \qquad T_C = 25^{\circ}\text{C} \\ T_C = 125^{\circ}\text{C} \\ T_C = 25^{\circ}\text{C} \\ T_C = 25^{\circ}\text{C} \\ T_C = 125^{\circ}\text{C} \\ T_$	DS(on)	-	-	3.75 0.375	Vdc		
Forward Transconductance $(V_{DS} \ge 2.0 \ V_{DS(on)}, \ I_D = 200 \ \text{mAdc})$ DYNAMIC CHARACTERISTICS Input Capacitance $(V_{DS} = 25 \ \text{Vdc}, \ V_{GS} = 0, \ f = 1.0 \ \text{MHz})$ Output Capacitance $(V_{DS} = 25 \ \text{Vdc}, \ V_{GS} = 0, \ f = 1.0 \ \text{MHz})$ Reverse Transfer Capacitance $(V_{DS} = 25 \ \text{Vdc}, \ V_{GS} = 0, \ f = 1.0 \ \text{MHz})$ SWITCHING CHARACTERISTICS (Note 5) Turn-On Delay Time $(V_{DD} = 25 \ \text{Vdc}, \ I_D \cong 500 \ \text{mAdc}, \ R_G = 25 \ \Omega, \ R_L = 50 \ \Omega, \ V_{gen} = 10 \ \text{V})$ BODY-DRAIN DIODE RATINGS Diode Forward On-Voltage	OS(on)	-	- - -	7.5 13.5 7.5	Ohms		
$(V_{DS} \geq 2.0 \ V_{DS(on)}, \ I_D = 200 \ mAdc)$ $DYNAMIC CHARACTERISTICS$ $Input Capacitance (V_{DS} = 25 \ Vdc, \ V_{GS} = 0, \ f = 1.0 \ MHz)$ $Output Capacitance (V_{DS} = 25 \ Vdc, \ V_{GS} = 0, \ f = 1.0 \ MHz)$ $Reverse Transfer Capacitance (V_{DS} = 25 \ Vdc, \ V_{GS} = 0, \ f = 1.0 \ MHz)$ $SWITCHING CHARACTERISTICS (Note 5)$ $Turn-On Delay Time (V_{DD} = 25 \ Vdc, \ I_D \cong 500 \ mAdc, \ R_G = 25 \ \Omega, \ R_L = 50 \ \Omega, \ V_{gen} = 10 \ V)$ $BODY-DRAIN DIODE RATINGS$ $Diode Forward On-Voltage V$		-	-	13.5			
	9FS	80	-	-	mmhos		
$(V_{DS} = 25 \text{ Vdc}, V_{GS} = 0, \text{ f} = 1.0 \text{ MHz})$ Output Capacitance $(V_{DS} = 25 \text{ Vdc}, V_{GS} = 0, \text{ f} = 1.0 \text{ MHz})$ Reverse Transfer Capacitance $(V_{DS} = 25 \text{ Vdc}, V_{GS} = 0, \text{ f} = 1.0 \text{ MHz})$ $SWITCHING CHARACTERISTICS \text{ (Note 5)}$ $Turn-On Delay Time \qquad (V_{DD} = 25 \text{ Vdc}, I_{D} \cong 500 \text{ mAdc}, \\ R_{G} = 25 \Omega, R_{L} = 50 \Omega, V_{gen} = 10 \text{ V)}$ $EODY-DRAIN DIODE RATINGS$ Diode Forward On-Voltage				-1	•		
$(V_{DS} = 25 \text{ Vdc}, V_{GS} = 0, \text{ f} = 1.0 \text{ MHz})$ $\text{Reverse Transfer Capacitance} \qquad \qquad C$ $(V_{DS} = 25 \text{ Vdc}, V_{GS} = 0, \text{ f} = 1.0 \text{ MHz})$ $\text{SWITCHING CHARACTERISTICS (Note 5)}$ $\text{Turn-On Delay Time} \qquad \qquad (V_{DD} = 25 \text{ Vdc}, \text{ I}_{D} \cong 500 \text{ mAdc}, \text{ R}_{G} = 25 \Omega, \text{ R}_{L} = 50 \Omega, \text{ V}_{gen} = 10 \text{ V})}$ $\text{BODY-DRAIN DIODE RATINGS}$ $\text{Diode Forward On-Voltage} \qquad \qquad V$	C _{iss}	-	-	50	pF		
	C _{oss}	-	-	25	pF		
	C _{rss}	-	-	5.0	pF		
	d(on)	-	-	20	ns		
Diode Forward On-Voltage V	d(off)	-	-	40	ns		
Diode Forward On-Voltage							
(IS = 11.5 IIIAuc, VGS = 0 V)	V _{SD}	-	-	-1.5	Vdc		
Source Current Continuous (Body Diode)	Is	-	-	-115	mAdc		
Source Current Pulsed	I _{SM}	-	-	-800	mAdc		

^{5.} Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%.

2N7002L

TYPICAL ELECTRICAL CHARACTERISTICS

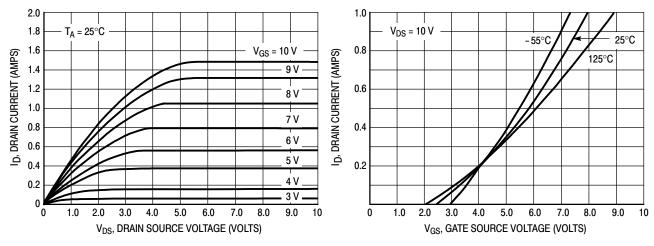
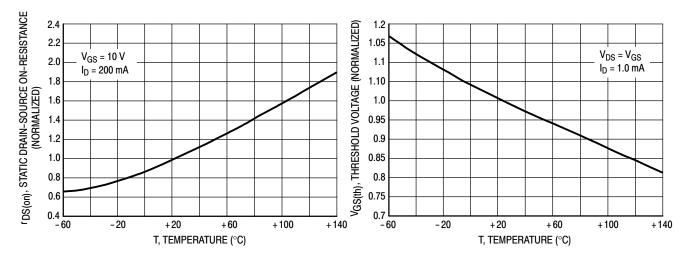


Figure 1. Ohmic Region

Figure 2. Transfer Characteristics



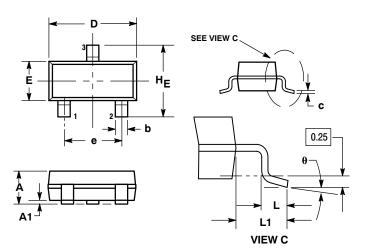

Figure 3. Temperature versus Static Drain-Source On-Resistance

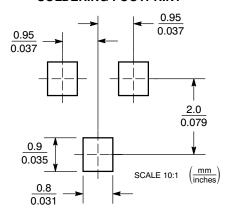
Figure 4. Temperature versus Gate Threshold Voltage

2N7002L

PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318-08 **ISSUE AN**

NOTES:


- DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982
- CONTROLLING DIMENSION: INCH
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- 318-01 THRU -07 AND -09 OBSOLETE, NEW STANDARD 318-08.

	М	ILLIMETE	RS		INCHES	
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.89	1.00	1.11	0.035	0.040	0.044
A1	0.01	0.06	0.10	0.001	0.002	0.004
b	0.37	0.44	0.50	0.015	0.018	0.020
С	0.09	0.13	0.18	0.003	0.005	0.007
D	2.80	2.90	3.04	0.110	0.114	0.120
E	1.20	1.30	1.40	0.047	0.051	0.055
е	1.78	1.90	2.04	0.070	0.075	0.081
L	0.10	0.20	0.30	0.004	0.008	0.012
L1	0.35	0.54	0.69	0.014	0.021	0.029
HE	2.10	2.40	2.64	0.083	0.094	0.104

STYLE 21:

- PIN 1. GATE
 - SOURCE

SOLDERING FOOTPRINT

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada **Fax**: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative